A model for predicting invasive weed and grass dynamics . II . Accuracy evaluation
نویسندگان
چکیده
Roger L. Sheley U.S. Department of Agriculture–Agricultural Research Service, 67826-A Highway 205, Burns, OR 97720 The impact of invasive weed management on plant community composition is highly dependent on location-specific factors. Therefore, treatment means from experiments conducted at a given set of locations will not reliably predict community response to weed management elsewhere. We developed a model that rescales treatment means to better match local conditions. The goal of this paper was to determine if this rescaling improves predictions. We used our model to predict leafy spurge stem length density and grass biomass data from field experiments. The experiments consisted of herbicide-treated plots, untreated controls, and, in some cases, grass seeding treatments. When herbicides suppressed leafy spurge, the model explained 21 to 48% more variation in grass response than did mean grass response to the same or similar herbicide treatments applied at other sites. When herbicides killed grass, the model explained 53% more variation in leafy spurge response than did mean leafy spurge response to the same herbicide treatment applied at other sites. We regressed model predictions against observed data and tested the null hypothesis that resulting slope terms were equal to 1.0. Because the null hypothesis was rejected in two of four tests, the model may systematically overor underpredict in some situations. However, measurement error in the observed data, unintended herbicide injury, or an inaccurate allometric relationship may account for a major proportion of the systematic deviations, and these factors would not cause prediction error in some management applications. Because the model tends to be better than the means from experiments at predicting plant community composition, we conclude that the model could advance managers’ ability to predict plant community responses to invasive weed management.
منابع مشابه
A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملA Hybrid Intelligent Model to Increase the Accuracy of COCOMO
Nowadays, effort estimation in software projects is turned to one of the key concerns for project managers. In fact, accurately estimating of essential effort to produce and improve a software product is effective in software projects success or fail, which is considered as a vital factor. Lack of access to satisfying accuracy and little flexibility in existing estimation models have attracted ...
متن کاملThe Optimization of Energy Supply Systems by Sequential Streamflow Routing Method and Invasive Weed Optimization Algorithm; Case Study: Karun II Hydroelectric Power Plant
Among the major sources of energy supply systems, hydroelectric power plants are more common. Energy supply during peak hours and less environmental issues are some of the most important advantages of hydroelectric power plants. In this study, designing parameters to supply maximum amount of energy was determined by using the simulation-optimization perspective and combination of IWO-WEAP model...
متن کاملA hybrid DEA-based K-means and invasive weed optimization for facility location problem
In this paper, instead of the classical approach to the multi-criteria location selection problem, a new approach was presented based on selecting a portfolio of locations. First, the indices affecting the selection of maintenance stations were collected. The K-means model was used for clustering the maintenance stations. The optimal number of clusters was calculated through the Silhou...
متن کاملThe Development of a Plant Risk Evaluation (PRE) Tool for Assessing the Invasive Potential of Ornamental Plants
Weed Risk Assessment (WRA) methods for evaluating invasiveness in plants have evolved rapidly in the last two decades. Many WRA tools exist, but none were specifically designed to screen ornamental plants prior to being released into the environment. To be accepted as a tool to evaluate ornamental plants for the nursery industry, it is critical that a WRA tool accurately predicts non-invasivene...
متن کامل